Kernel-independent adaptive construction of $$\mathcal {H}^2$$-matrix approximations

نویسندگان

چکیده

Abstract A method for the kernel-independent construction of $$\mathcal {H}^2$$ H2 -matrix approximations to non-local operators is proposed. Special attention paid adaptive nested bases. As a side result, new error estimates cross approximation (ACA) are presented which have implications on pivoting strategy ACA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp analysis of low-rank kernel matrix approximations

We consider supervised learning problems within the positive-definite kernel framework, such as kernel ridge regression, kernel logistic regression or the support vector machine. With kernels leading to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of computing the kernel matrix, which most frequently leads to algorithms with running time at least ...

متن کامل

Learning the kernel matrix via predictive low-rank approximations

Efficient and accurate low-rank approximations to multiple data sources are essential in the era of big data. The scaling of kernel-based learning algorithms to large datasets is limited by the O(n) complexity associated with computation and storage of the kernel matrix, which is assumed to be available in most recent multiple kernel learning algorithms. We propose a method to learn simultaneou...

متن کامل

Distributed Adaptive Sampling for Kernel Matrix Approximation

Most kernel-based methods, such as kernel or Gaussian process regression, kernel PCA, ICA, or k-means clustering, do not scale to large datasets, because constructing and storing the kernel matrix Kn requires at least O(n2) time and space for n samples. Recent works [1, 9] show that sampling points with replacement according to their ridge leverage scores (RLS) generates small dictionaries of r...

متن کامل

Adaptive Experimental Design for Construction of Response Surface Approximations

Sequential Approximate Optimization (SAO) is a class of methods available for the multidisciplinary design optimization (MDO) of complex systems that are composed of several disciplines coupled together. One of the approaches used for SAO, is based on a quadratic response surface approximation, where zero and first order information are required. In these methods, designers must generate and qu...

متن کامل

construction and validation of a computerized adaptive translation test (a receptive based study)

آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2021

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-021-01255-y